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SUMMARY 

The applicability of threshold logic units, a form of nonparametric pattern recognition, 
to the processing of me’tabolic profile data obtained by high-efficiency glass capillary column 
gas chromatography has been investigated. The test data included profiles of the volatile 
constituents of urine from normal individuals and from individuals with diabetes mellitus. 
A feature extraction algorithm allowed for dimensionality reduction and indicated the 
constituents most important in the normai versus pathological distinction_ With an optimum 
number of dimensions, a normal versus pathological prediction rate of 93.75% was achieved_ 
Gas chromatography-mass spectrometry was utilized to identify important profile constit- 
uents 

INTRODUCTION 

Multicomponent chromatographic analyses have been developed for several 
of the classes of chemical constituents in various human physiological fluids 
[l-18] . Such analyses, generally termed metabolic profiles [l-2], provide 
qualitative and quantitative data that reflect the state of a variety of metabolic 
processes within the body. The primary utility of metabolic profiling is recog- 
nized as being in the study of the etiology of diseases through the biochemical 
elucidation of physiological and pathological processes. Eventually, selected 
profiling techniques may also serve as clinical screening or diagnostic aids. 

Although the sampling and analytical aspects of certain profiling techniques 
are sufficiently refined for routine research use, biomedical correlations of pro- 
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file data are rare. Several problems have limited the extraction of useful infor- 
mation from the complex profile data. Aside from pathological alterations, 
profiles vary considerably due to factors such as individual diet and genetic 
conformation. These individual variations can be of the same magnitude as the 
pathological variation. Ascertainment of the latter variations thus requires com- 
parison of large sets of normal and pathological profiles, such that the non- 
pathological variations are effectively equalized in both pattern sets. Reliable 
manual comparison of large sets of profiles containing more than 200 constitu- 
ents is simply not feasible. The alternative process of preselecting profile con- 
stituents for comparison, based on their probable metabolic activity, is not al- 
ways desirable. Since much of metabolism is not well understood, preselection 
may discard potentially important information. Furthermore, preselection re- 
quires previous identification of essentially all profile constituents, for which 
the only practical technique is gas chromatography-mass spectrometry (GC- 
MS). Due to the small sample quantities involved, and the general lack of 
appropriate reference spectra, GC-MS identifications of volatile constituents 
are freque-ntly arduous. Thus, a data analysis technique is required that must 
first be capable of distinguishing profiles of individuals in a particular diseased 
state from those of normal individuals. It must not require initial assumptions 
concerning the statistical distribution of the data. Secondly, but quite impor- 
tantly, the analysis must indicate what components of the profile data are in- 
volved in the normal versus pathological distinction. The distinctive metabolites 
may then be identified, and their metabolic precursors can be determined with 
loading tests or other appropriate methodology. 

In this report, we describe the development of threshold logic unit (TLU) 
techniques, a form of nonparametric pattern recognition 1191, for the proces- 
sing of the metabolic profile data. TLUs have been trained to distinguish nor- 
mal and pathological patterns and, in combination with feature extraction algo- 
rithms, have designated the pattern components most significant in the distinc- 
tion. Since TLU techniques function independent of assumptions of metabolic 
significance, preselection is not required, and identification need only be ob- 
tained for those compounds found to be significant in the normal versus patho- 
logical distinction_ 

Nonparametric pattern recognition techniques have been applied to several 
biomedical problems 120, 211 and their numerous applications in the chemical 
field have been recently reviewed 122, 231. However, their prior utilization 
with multicomponent chromatographic data has been limited to studies of pe- 
troleum sample type identification 1241, Wilcoxon-test correlations of human 
urinary amino acid analyses and initial correlations of volatile constituent 
analyses [S, 251. 

In this study the TLU procedure has been tested with urinary volatile con- 
stituent profiles obtained by high-resolution (glass capillary) gas chromatogra- 
phy. Volatile constituent profiles are of interest [‘7--181 due to their complex- 
ity, frequently exceedir.9 200 detectable compounds, and due to their inclusion 
of by-products, internlediates, and terminal products of a wide variety of me- 
tabolic processes. The pathological condition chosen for testing purposes was 
diabetes mellikts, primarily because of sample availability. While the biochemi- 
cal information extracted from the profiles in this study may be of some utili- 
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ty, the primary objective has been the development of a generally applicable 
methodology. 

MATERIALS AND METHODS 

Headspace sampling and chromatographic separation : 
The procedures and instrumentation utilized for the acquisition of the me- 

tabolic profiles have been previously described [16]_ Volatiles in the heated 
(100”) urine headspace were adsorbed onto 2 mg of 2,6-diphenyl-p-phenylene 
oxide porous polymer (Tenax GC; Applied Science Labs., State College, Pa., 
U.S.A.). The porous polymer_ was contained in platinum microbaskets which 
were subsequently encapsulated for injection. 

All chromatographic functions were automated 1161. Reproducibly pre- 
pared glass capillary columns 1161 (60 m X 0.29 mm I.D.) coated with GE SF- 
96 methylsilicone fluid were employed. The column effluent was split between 
a flame ionization detector (FID) and a nitrogen-sensitive thermionic detector_ 
Only the FID data were incorporated into the pattern recognition studies; the 
nitrogen-sensitive detector data were used in the identification of profile con- 
stituents. 

In the only modification of prior procedures, a reference for relative reten- 
tion time calculations was provided by the addition of two internal standards 
to the physiological fluid prior to headspace sampling. Full scale peaks (cor- 
responding to approximately 25 ng by direct injection) resulted from the intro- 
duction of 0.3 ng of 6-undecanone and 20 fig of lo-nonadecanone in 5 ~1. 
acetone. The standards were added to the urine samples immediately prior to 
the transferring of them into the sampling vessel. As acetone elates in the first 
peak of the profile and has a short retention tinie on the Tenax adsorbent, it 
had no adverse effect on the chromatograms. 

Sample collection 
Diabetic urine samples were collected from 29 individuals, including out- 

patients and patients at two hospitals. Of these, 15 were diagnosed as diabetics 
with further complications. Normal samples were obtained from 35 individuals, 
including those hospitalized for 24 h solely for the sample collection_ Medical 
histories were maintained, but samples were not excluded on this basis. No diet 
regulation was involved. 

Twenty-four hour urine samples were collected; interim samples were frozen 
over dry. ice. The samples were then brought to room temperature, filtered, di- 
vided into 50 ml aliquots and refrozen at - 20”. No preservatives or diluents 
were added. 

Data analysis 
For use in TLU processing, each metabolic profile was represented as a pat- 

tern vector of the form: 

x= (Xl, x*, I.. . . . . _Xn) 

where each vector component, Xi, was calculated from peek areas in the profile 
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chromatogram. Using a training set of known patterns, representing normal and 
pathological profiles, an n-dimensional hyperplane, or classification surface, 
was developed which classified, or linearly separated, the patterns into the two 
known groups. The classification criteria were: 

+ + 
w-x<0 for 2 representing normal profiles 

+ + 
W . X > 0 for 2 representing pathological profiles 

where W is the weight vector, a normal vector from the classification surface. 
The TLU training procedures are quite simple and have been described else- 
where [19]. Once developed, the validity of the weight vector was tested by 
Fredicting, according to the above criteria, the classification of patterns not 
present in the training set. 

In Amy pattern recognition process, it is important that the ratio (R) of the 
number of training patterns to the number of pattern dimensions be as large as 
possible; cases where R< -.2 must be carefully interpreted 1263. As described 
Mow, a leave-out-one algorithm was employed in this study to allow operation 
with an initial KG 2. In addition, to control the pattern dimensionality, each 
pattern component was calculated as the sum of the peak areas in a small in- 
terval of the profile chromatogram. Such combining of peaks yields an appar- 
ent loss of information, in that differences in more than one peak in an interval 
may partially cancel, and observed differences cannot necessarily be assigned 
to a single peak. In fact, many intervals contained only one peak. Further, 
once an interval was found to be significant, it was subdivided and reevaluated. 
This process can be continued untii the significr~nce can be assigned to a single 
constituent. 

Initially, patterns of 100 dimensions were used. The section of the chroma- 
togram between injection and the elution of the 6-undecanone internal stan- 
dard was divided into 50 intervals of equal length in time. Similarily, the sec- 
tion between the elution of 6-undecanone and the IO-nonadecanone internal 
standard was divided into 50 uniform intervals. The lo-nonadecanone peak was 
the last to elute in nearly all profiles. The program located the two internal 
standards by examining an absolute retention time “window” (2 min for 6- 
undecanone and 3 min for IO-nonadecanone) and designating the largest peak 
in the “window” as the internal standard. For this study, the designation was 
also manually verified; no errors occurred. 

Prior to the TLU training procedure, the pattern components were auto- 
scaled [23] according to the formula: 

where xfii is the autoscaled r* component of the I* pattern, xti is the initial 
component, ~_i~ the mean and oi the standard deviation of the 2% component in 
all patterns. The autoscaling operation equalizes the initial weighting of the 
intervals. Autoscaling improved the prediction rate of the subsequently trained 
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TLUs by as much as 15%. A normalization procedure, in which each compo- 
nent peak area was expressed as a fraction of the total chromatogram peak area 
according to: 

x’__ = 
x -- II 

v 
100 
z xfj 

i=l 

was found to reduce prediction rates, both with and without autoscaling [27]. 
Training and testing of TLUs was executed with the lOOdimensional pat- 

terns and reduced dimension patterns derived therefrom. In each case, training 
was performed with a leave-outcone algorithm [28] operated in a rotating basis. 
In the leave-out-one algorithm, ail available patterns except one were used to 
train the TLU. The validity of the TLU was then tested by predicting the classi- 
fication of the omitted pattern. The pattern set was then rotated to omit a 
different pattern from the training set, and the training and prediction were 
repeated. The rotation was repeated until each pattern had served as the pre- 
diction test pattern. The percentage of the test patterns that was correctly 
predicted was recorded for each cycle. A feature extraction algorithm, to des- 
ignate pattern components most significant in the classification, was developed 
for the leave-out-one technique. Since the pattern components were auto- 
scaled, the components of the weight vector were indicative of the significance 
of the respective components. An average weight vector was determined for a 
complete rotation cycle by calculating the vector sum of each of the individual 
weight vectors trained. At the condition of a rotation, the magnitude of the 
components of the average weight vector where thus indicative of the average 
significance of each pattern component. A preselected number of the least sig- 
nificant components was then discarded and another rotation cycle was initi- 
ated. The program was continued until the training process was unable (in 500 
iterations) to find a hyperplane that linearly separated the profile classes. 

The leave-out-one algorithm offers two significant advantages, as compared 
to the use of discrete training and prediction pattern sets. First, it yields a 
maximum value of R for any available data set. Second, it facilitates operation 
with R< 2, provided the ratio of the number of patterns to the number of 
intrinsic dimensions is greater than two. The intrinsic dimensions are defined 
1291 to be those dimensions that contain information significant in the classi- 
fication process. In standard training studies with R < 2, a weight vector may 
be obtained that provides a linear separation of the pattern classes, but has no 
valid predictive capability. Such a separation may be based on the non-in&insic 
dimensions. The non-intrinsic dimensions can be regarded as noise mixed with 
the intrinsic dimensions. The leave-out-one technique, in calculating an average 
weight vector, effectively filters out the non-intrinsic dimensions in a r&nner 
analogous to ensemble averaging, thus allowing the extraction of the intrinsic 
pattern components. 

Peak areas and retention times were recorded with a commercial chromato- 
graphic data system (Model PEP-2; Perkin Elmer, Norwalk, Conn., rJ.S.A.). All 
subsequent processing was performed on a CDC 6600 computer. The training 
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and autoscaling 
THUR, created 
upon request. 

programs were. developed in part from the program set AR- 
by Kowalski and Drewer 1301. Our programs are available 

Gaschromatography-mzssspectrometry 
Volatile urine constituents were sampled as described above, except that the 

Tenax adsorbent was contained in a glass precolumn, rather than a platinum 
microcapsule. Details of this sampling technique have been previously reported 
[14]. Electron-impact spectra were obtained with a gas chromatograph-mass 
spectronieter (Hewlett-?ackard Model 59808). The glass capillary column was 
interfaced to the ion source with an all-glass, single-stage jet separator (Scientific 
Glass Engineering, Melbourne, Australia), maintained at 270”. Identifications 

i were confirmed by comparison of spectra and retention indices of authentic 
samples recorded-with the same instrument. 

RJZSULTS AND DISCUSSION 

Two training sets were prepared_ One included the entire set of 35 normals 
and 29 diabetics (Data Set A), the other included the normals and only the 14 
diabetics diagnosed to be free of complications (Data Set B). The results of 
TLU training and feature extraction with these two data sets are presented in 
Table P. Features were extracted at the rate of five or ten per cycle, as indicated 
in the Table. 

At the optimum number of dimensions, 92.2% of the patterns in Data Set 
A and 83.7% of Data Set B were correctly predicted. These percentages are 
significantly grea%r than the 54.7% and 71.4%, respectively, that would be 
obtained by ,imply classifying each pattern as a normal. With the leave-out-one 
algorithm, satisfactory results were obtained despite the low ratio of patterns 
to iinitisl dimensions. The inciease in prediction with decreasing number of 
features substantiates the importance of the intrinsic dimensionality. As the 
insignificant dimensions were discarded, there was less chance of a change in an 
insignificant constituent adversely affecting the pattern classification_ The im- 
proved prediction with increasing training set size was expected, as the weight 
vector was exposed to a more complek s&set of the possible profiles and was 
thus more likely to be trained for the test data. 

-To utilize the tinformation obtained by feature extraction, it is necessary to 
associate the retained’dimensions with the original profiles. In Fig. 1, a diabetic 
profile (A) s&d a normal profile (13) are shown together with scale markings 
indicating the retained intervals in the test of 35 normals and 14 diabetics 
(Intervals Retained A) and in the test of 35 normals and 14 diabetics (Intervals 
Retained B).. To describe the two chromatograms as typical of normals and 
diabetics would falsely imply thal the pattern chromatograms can be general- 
ized. I-fowever, the’ chromatograms shown are not unlike others obtained from 
such individuals. 

The- components of t&-3 averag e weight vector and the original pattern di- 
mensions corresponding to the retained intervals are given in Table II. The 
i_,;it$al assignment of patterns designated a nega’qvely valued dot product of the 
@attern and weight vector to be normal, and- L\ Fositive dot product to be 
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TABLE I 

TLU PREDKTION RATE FOR DATA SETS A AND B WITH EITHER 10 OR 5 FEA- 
TURES EXTRACTED ON A ROTATION CYCLE 

Data Set A Data Set B 

No. dimensions Correct No. dimensions Correct 

retained (a) retained (%I 

100 67.2 100 57.1 
90 70.1 90 57.1 
80 71.9 80 57.1 
70 71.6 70 69.4 
60 79.7 60 71.4 
50 81.3 50 73.5 
40 79.7 40 77.6 
35 84.4 35 81.6 
30 79.7 30 79.6 
25 84-4 25 81.6 
20 82.8 20 83-7 
15 92.2 15 83.7 
10 DNC* 10 78.7 

5 DNC* 

l DNC = Did not converge after 500 training iterations, i.e., could not linearly separate the 

training set data. 

Fig. 1. (A) Chromatogram oi the winary volatiles of a diabetic male. (B) Chromatogram of 
the urinary volatiles of a normal female. Scale markings ipdicate intervals selected as signifi- 
*ant in the distinction of normal and dibetic profiles, as reported in Tables III and IV. S= 
internal standard pea&. 
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TABLE II 

COMPONENTS OF AVERAGE -WEIGHT VECTOR _4T 15 RETAINED DIMENSIONS 
AND IDENTIFIED’COMPOUNDS FOR DATA SETS A AND B 

Data Set A Dats Set e 

Ix&erwi* Corrponent Identified Interval* * Component Identified 
component component 

i-15 2.03 
b-32 - 9.68 
-39 -12.96 
d-49 -13.27 
60 6.41 
f-51 6.56 
g-60 7.19 
h-62 8.59 
i-66 - 5.78 
j-81 7.34 
k-82 11.56 
I-83 -_ 7.97 
m-85 7.19 
n-93 7.66 
o-97 7.03 

4-Heptanone a-37 - 9.39 
b-41 - 9.24 
c--45 5.51 
d-48 7.96 

Indole e-51 9.18 
f-60 4.90 
g-61 - 10.82 
h-62 7.76 
:+ 3 4.29 
.j-66 - 9.18 
4-77 9.18 
I- s’i 16.33 
m-8 5 6.12 
a-97 5.51 
o-99 - 8.57 

Carvone 

*Fig. 1 Int. Ret. A. 

**Fig. 1 Ink. Ret. B. 

diabetic. Because the p&em components were autoscaled, a given pattern 
component may have either a negative or positive value. Thus, a peak of greater 
than average area that occurs in an interval with a negative weight vector com- 
ponent is indicative of a normal profile; a peak of less than average area is in- 
dicative of a diabetic profile. The converse is true for positive weight vector 
components_ This consideration comprises an important aspect of autoscaling. 
Without this preprocessing, ah pattern components would have positive values, 
and the .presence of a given peak could indicate only one condition, regardless 
of the size of the peak. T&s, autoscaling is advantageous when significant 
peaks are present in both classes, l;ut w&h differing areas. Autoscaling would be 
disadvantageous when the simple presenct of certain peaks is indicative of the 
profiie cl&s. 

In several intervaLc <‘_5,32: -39,3i, 4:3,Sr), 63,77,82,85,93) a peak may be 
recognized in the. chromatograms in Fig. 1 that varies in area as predicted by 
the sign of the weight vector components. Confirmation of the results in other 
intervals required exmination of several more chromatograms. It is of interest 
that many of the significant intervals fall in the latter portion of the chromato- 
gram and-thus inv2Ive urinary constituents not observed in the previous volatile 
profile stud&. Punher, : many of these intervals involve only small peaks 
which might be negk?ed in manual data analysis. The selection of several sets 
of adjacent intervjrls may simply reflect the locality of seven&important peaks, 
or may arise from certein significant peaks shifting between intervals due to 
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very slight variations in relative retention times. 
Due to the interaction and frequent nonspecificity of metabolic prxesses, 

the information in certain pattern dimensions may be diagnostically equivalent. 
Such redundance may result in none of the dimensions achieving a high signifi- 
cance in the classification until one or more is discarded. Rapid feature exirac- 
tion may discard a set of redundant dimensions in a single -cycle, eliminating 
the information completely_ This is demonstrated by the improved prediction 
rates obtained by slow feature extraction reported in Table III. Ten features 
were extracted per training cycle for five cycles, and one per cycle thereafter: 
results are given only for selected cycles. A trade-off between computation 
costs and classification results is also evident. 

Another example of redundance may be observed in Fig. 1. Seven intervals 
(51, 60, 62, 66, 82, 85, 97) are clearly- significant, in that theg: are retained 
in both weight vectors. The information content of the other intervals is likely 
to be redundant, with respect to either the intervals retained in both vectors 
or with respect to other periodically retained intervals. Eecause of this redun- 
dance, the significance of the retained and discarded dimensions must be care- 
fully interpreted_ While profile constituents in a retained dimension are clearly 
important in the pattern classification, a discarded dimension may also contain 
constituents involved in the aberrant metabolism. 

To investigate further the redundance in the profile data and the effect of 
increasing the value of R, TLUs were trained and tested with abbreviated 
patterns. Data sets were prepared that contained only twenty !ntervals (l-20, 
21-40, etc.). On the first training cycle, only the set composed of intervals 
41-60 was linearly separable. Feature exttaction resulted in a maximum pre- 

TABLE III 

TLU PREDICTION RATE FOR DATA SFYT A 

With 10 features extracted each of first 5 rotations and 1 feature extracted each rotation 
thereafter. 

No. dimensions Cycie No. Correc; 
retained (%> 

100 1 67.19 
70 4 76.56 
50 6 81.25 
35 21 81.25 
26 30 90.63 
20 36 90.63 
18 38 93.75 
15 41 92.18 
13 43 89.06 
10 46 89.06 

7 49 90.63 
6 50 DNC* 

l DNC= Did not converge after 500 training iterations. 
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diction rate of 82.8% with 13 of the original 20 dimensions retained. The 
seven most significant of these dimensions were then combined with the 13 
most significant intervals (as determined from the test reported in Table I) 
of the remaining original SO dimensions. Training and feature extraction with 
these 20 .dimension patterns resulted in a maximum prediction of 93.8% cor- 
rect with II retained dimensions. All eleven dimensions were included among 
those listed in Table I. 

These results substantiate the previous conclusion that redundance exists 
within the prorile information, but that several dimensions contain essential 
information. Further, within t?e range examined, the results are not signifi- 
cantly improved by manupily selecting the initial dimensions and thus in- 
creasing the value of R. 

Referring back to Fig. 1, several retained intervals are seen to contain more 
than cne constituent peak. Thus, the significance of the interval cannot be as- 
signed to a single .constituent. To reduce this ambiguity, each of the 15 most 
significant intervals (Table II) was split into two equal intervals and the result- 
ing 30 dimension patterns were used to train a new TLU. In the case of Data 
Set A, 17 of the 80 dimensions were retained at an optimum prediction rate of 
92.2% identical tti tk rate prior to the breakdown, A prediction rate of 91.8% 
was obtained with Data Set 3 with 13 of the dimensions retained. The signs of 
the weight vector componec& f&owing the split invariably agreed with 
those corresponding to the same Interval prior to the division, although the rela- 
tive magnitude of the weight vector components did vary. A few of the subdivi- 
ded intetials contained more than one constituent peak. It would be possible to 
contimue the division until each interval contained only one peak or until 
small variations in relative retention times precluded the reliable assignment 
of a peak to a given interval. 

The high prediction rates achieved by the TLUs are indicative of their po- 
tential as diagnostic or screening .tils. However, their biomedical potential is 
more immediately discemable, and requires the identification of the significant 
constituents_ Several of the constituents found to be significant in the pattern 
recognition studies have been tentatively identified, including both sulfur- and 
nitrogencontaining ccmpounds. Hcwever, only three of these compounds have 
been confirmed by comparison to suthentic spectra at present. 

Once reference spectra can be obtained, the other identifications will be 
reported. The three identified and confirmed compounds and the correspond- 
Lang intervals arc listed in Table II. The weight vector components of each of 
these compouds was positive. Thus, increasing concentrations of these com- 
pounds were indicative of a diabetic classification. Increasing concentrations 
of 4-heptanone in ‘the urine of diabetics has been previously reported by Lie- 
bich and Al-Babbili 173 . 

One reservation must be cited concerning the interpretation of the results of 
the TLU training and prediction. All but one of the diabetic patients were 
receiving various medications for diabetes and in some cases for other condi- 
tions. The one individual not recel-,-ig medication was misclassified in both 
TLU rotations. Contiaceptives wer: the. only medication known to have bpz-, 
taken by any of the normal i+lividuaIs. Thus, the possibility that the patter.2 
distinction was based on me’Zabolites of the medication or compounds induced 
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by it rather than those related to the disease cannot be excluded. The analysis 
of more diet-controlled diabetics would clarify the interpretation of the pattern 
recognition results. However, the capability of the TLU technique to identify 
the profile components most significant in the class distinction is not dimin- 
ished by this ambiguity. 

CONCLUSIONS 

The results of this study indicate the utility of threshold logic unit end fea- 
ture extraction techniques in the determination of constituents important in 
the classification of urinary volatile constituent metabolic profiles. It is likely 
that these techniques can be readily extended to profiles of other complex 
fractions in which pathological changes cannot otherwise be distinguished from 
normal individual variations. By increasing the efficiency of the extraction 
of information from the profiles, pattern recognition techniques should en- 
hance the utility of metabolic profiles in many biochemical studies. 
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